Characteristics of Computer Networking - Cloud Computing -

Cloud Computing exhibits the following key Characteristics:

Agility improves with users' ability to re-provision technological infrastructure resources.

Application programming interface (API) accessibility to software that enables machines to interact with cloud software in the same way that a traditional user interface (e.g., a computer desktop) facilitates interaction between humans and computers. Cloud computing systems typically use Representational State Transfer (REST)-based APIs.

Cost: cloud providers claim that computing costs reduce. A public-cloud delivery model converts capital expenditure to operational expenditure.

This purportedly lowers barriers to entry, as infrastructure is typically provided by a third-party and does not need to be purchased for one-time or infrequent intensive computing tasks.

Pricing on a utility computing basis is fine-grained, with usage-based options and fewer IT skills are required for implementation (in-house). The e-FISCAL project's state-of-the-art repository contains several articles looking into cost aspects in more detail, most of them concluding that costs savings depend on the type of activities supported and the type of infrastructure available in-house.

Device and location independence enable users to access systems using a web browser regardless of their location or what device they use (e.g., PC, mobile phone). As infrastructure is off-site (typically provided by a third-party) and accessed via the Internet, users can connect from anywhere.

Virtualization technology allows sharing of servers and storage devices and increased utilization. Applications can be easily migrated from one physical server to another.

Multitenancy enables sharing of resources and costs across a large pool of users thus allowing for: centralization of infrastructure in locations with lower costs (such as real estate, electricity, etc.)

peak-load capacity increases (users need not engineer for highest possible load-levels)

utilisation and efficiency improvements for systems that are often only 10–20% utilised.

Reliability improves with the use of multiple redundant sites, which makes well-designed cloud computing suitable for business continuity and disaster recovery.
Scalability and elasticity via dynamic ("on-demand") provisioning of resources on a fine-grained, self-service basis near real-time (Note, the VM startup time varies by VM type, location, os and cloud providers), without users having to engineer for peak loads.

Performance is monitored, and consistent and loosely coupled architectures are constructed using web services as the system interface.

Security can improve due to centralization of data, increased security-focused resources, etc., but concerns can persist about loss of control over certain sensitive data, and the lack of security for stored kernels. Security is often as good as or better than other traditional systems, in part because providers are able to devote resources to solving security issues that many customers cannot afford to tackle. However, the complexity of security is greatly increased when data is distributed over a wider area or over a greater number of devices, as well as in multi-tenant systems shared by unrelated users. In addition, user access to security audit logs may be difficult or impossible. Private cloud installations are in part motivated by users' desire to retain control over the infrastructure and avoid losing control of information security.

Maintenance of cloud computing applications is easier, because they do not need to be installed on each user's computer and can be accessed from different places.

The National Institute of Standards and Technology's definition of cloud computing identifies "five essential characteristics":

  • On-demand Self-service: A consumer can unilaterally provision computing capabilities, such as server time and network storage, as needed automatically without requiring human interaction with each service provider.
  • Broad Network Access: Capabilities are available over the network and accessed through standard mechanisms that promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, tablets, laptops, and workstations).
  • Resource Pooling: The provider's computing resources are pooled to serve multiple consumers using a multi-tenant model, with different physical and virtual resources dynamically assigned and reassigned according to consumer demand.
  • Rapid Elasticity: Capabilities can be elastically provisioned and released, in some cases automatically, to scale rapidly outward and inward commensurate with demand. To the consumer, the capabilities available for provisioning often appear unlimited and can be appropriated in any quantity at any time.
  • Measured Service: Cloud systems automatically control and optimize resource use by leveraging a metering capability at some level of abstraction appropriate to the type of service (e.g., storage, processing, bandwidth, and active user accounts). Resource usage can be monitored, controlled, and reported, providing transparency for both the provider and consumer of the utilized service.

On-Demand Self-Service

On-demand self-service allows users to obtain, configure and deploy cloud services themselves using cloud service catalogues, without requiring the assistance of IT. This feature is listed by the National Institute of Standards and Technology (NIST) as a characteristic of cloud computing.

The self-service requirement of cloud computing prompts infrastructure vendors to create cloud computing templates, which are obtained from cloud service catalogues.

Manufacturers of such templates or blueprints include BMC Software (BMC), with Service Blueprints as part of their cloud management platform Hewlett-Packard (HP), which names its templates as HP Cloud Maps, RightScale and Red Hat, which names its templates CloudForms.

The templates contain predefined configurations used by consumers to set up cloud services. The templates or blueprints provide the technical information necessary to build ready-to-use clouds. Each template includes specific configuration details for different cloud infrastructures, with information about servers for specific tasks such as hosting applications, databases, websites and so on. The templates also include predefined Web service, the operating system, the database, security configurations and load balancing.

Cloud computing consumers use cloud templates to move applications between clouds through a self-service portal. The predefined blueprints define all that an application requires to run in different environments. For example, a template could define how the same application could be deployed in cloud platforms based on Amazon Web Service, VMware or Red Hat. The user organization benefits from cloud templates because the technical aspects of cloud configurations reside in the templates, letting users deploy cloud services with a push of a button. Developers can use cloud templates to create a catalog of cloud services. 

Service Models of Cloud Computing

Cloud Computing providers offer their services according to several fundamental models: infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS) where IaaS is the most basic and each higher model abstracts from the details of the lower models. Other key components in anything as a service (XaaS) are described in a comprehensive taxonomy model published in 2009, such as Strategy-as-a-Service, Collaboration-as-a-Service, Business Process-as-a-Service, Database-as-a-Service, etc. In 2012, network as a service (NaaS) and communication as a service (CaaS) were officially included by ITU (International Telecommunication Union) as part of the basic cloud computing models, recognized service categories of a telecommunication-centric cloud ecosystem.

Infrastructure as a Service (IaaS) - Cloud Computer infrastructure

In the most basic cloud-service model, providers of IaaS offer computers – physical or (more often) virtual machines – and other resources. (A hypervisor, such as Hyper-V or Xen or KVM or VMware ESX/ESXi, runs the virtual machines as guests. Pools of hypervisors within the cloud operational support-system can support large numbers of virtual machines and the ability to scale services up and down according to customers' varying requirements.) IaaS clouds often offer additional resources such as a virtual-machine disk image library, raw (block) and file-based storage, firewalls, load balancers, IP addresses, virtual local area networks (VLANs), and software bundles. IaaS-cloud providers supply these resources on-demand from their large pools installed in data centers. For wide-area connectivity, customers can use either the Internet or carrier clouds (dedicated virtual private networks).

To deploy their applications, cloud users install operating-system images and their application software on the cloud infrastructure. In this model, the cloud user patches and maintains the operating systems and the application software. Cloud providers typically bill IaaS services on a utility computing basis: cost reflects the amount of resources allocated and consumed.
Cloud communications and cloud telephony, rather than replacing local computing infrastructure, replace local telecommunications infrastructure with Voice over IP and other off-site Internet services.

Platform as a Service (PaaS)

In the PaaS models, cloud providers deliver a computing platform, typically including operating system, programming language execution environment, database, and web server. Application developers can develop and run their software solutions on a cloud platform without the cost and complexity of buying and managing the underlying hardware and software layers. With some PaaS offers like Windows Azure, the underlying computer and storage resources scale automatically to match application demand so that the cloud user does not have to allocate resources manually. The latter has also been proposed by an architecture aiming to facilitate real-time in cloud environments.

Software as a Service (SaaS)

In the business model using software as a service (SaaS), users are provided access to application software and databases. Cloud providers manage the infrastructure and platforms that run the applications. SaaS is sometimes referred to as "on-demand software" and is usually priced on a pay-per-use basis. SaaS providers generally price applications using a subscription fee.

In the SaaS model, cloud providers install and operate application software in the cloud and cloud users access the software from cloud clients. Cloud users do not manage the cloud infrastructure and platform where the application runs. This eliminates the need to install and run the application on the cloud user's own computers, which simplifies maintenance and support. Cloud applications are different from other applications in their scalability. which can be achieved by cloning tasks onto multiple virtual machines at run-time to meet changing work demand. Load balancers distribute the work over the set of virtual machines. This process is transparent to the cloud user, who sees only a single access point. To accommodate a large number of cloud users, cloud applications can be multitenant, that is, any machine serves more than one cloud user organization. It is common to refer to special types of cloud-based application software with a similar naming convention: desktop as a service, business process as a service, test environment as a service, communication as a service. 

The pricing model for SaaS applications is typically a monthly or yearly flat fee per user, so price is scalable and adjustable if users are added or removed at any point.

Proponents claim SaaS allows a business the potential to reduce IT operational costs by outsourcing hardware and software maintenance and support to the cloud provider. This enables the business to reallocate IT operations costs away from hardware/software spending and personnel expenses, towards meeting other goals. In addition, with applications hosted centrally, updates can be released without the need for users to install new software. One drawback of SaaS is that the users' data are stored on the cloud provider's server. As a result, there could be unauthorized access to the data. For this reason, users are increasingly adopting intelligent third-party key management systems to help secure their data.


You May Also Like